Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317381

RESUMO

Ammonium-related pathways are important for groundwater arsenic (As) enrichment, especially via microbial Fe(III) reduction coupled with anaerobic ammonium oxidation; however, the key pathways (and microorganisms) underpinning ammonium-induced Fe(III) reduction and their contributions to As mobilization in groundwater are still unknown. To address this gap, aquifer sediments hosting high As groundwater from the western Hetao Basin were incubated with 15N-labeled ammonium and external organic carbon sources (including glucose, lactate, and lactate/acetate). Decreases in ammonium concentrations were positively correlated with increases in the total produced Fe(II) (Fe(II)tot) and released As. The molar ratios of Fe(II)tot to oxidized ammonium ranged from 3.1 to 3.7 for all incubations, and the δ15N values of N2 from the headspace increased in 15N-labeled ammonium-treated series, suggesting N2 as the key end product of ammonium oxidation. The addition of ammonium increased the As release by 16.1% to 49.6%, which was more pronounced when copresented with organic electron donors. Genome-resolved metagenomic analyses (326 good-quality MAGs) suggested that ammonium-induced Fe(III) reduction in this system required syntrophic metabolic interactions between bacterial Fe(III) reduction and archaeal ammonium oxidation. The current results highlight the significance of syntrophic ammonium-stimulated Fe(III) reduction in driving As mobilization, which is underestimated in high As groundwater.

2.
Environ Sci Technol ; 56(14): 10105-10119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35763428

RESUMO

High-arsenic (As) groundwaters, a worldwide issue, are critically controlled by multiple interconnected biogeochemical processes. However, there is limited information on the complex biogeochemical interaction networks that cause groundwater As enrichment in aquifer systems. The western Hetao basin was selected as a study area to address this knowledge gap, offering an aquifer system where groundwater flows from an oxidizing proximal fan (low dissolved As) to a reducing flat plain (high dissolved As). The key microbial interaction networks underpinning the biogeochemical pathways responsible for As mobilization along the groundwater flow path were characterized by genome-resolved metagenomic analysis. Genes associated with microbial Fe(II) oxidation and dissimilatory nitrate reduction were noted in the proximal fan, suggesting the importance of nitrate-dependent Fe(II) oxidation in immobilizing As. However, genes catalyzing microbial Fe(III) reduction (omcS) and As(V) detoxification (arsC) were highlighted in groundwater samples downgradient flow path, inferring that reductive dissolution of As-bearing Fe(III) (oxyhydr)oxides mobilized As(V), followed by enzymatic reduction to As(III). Genes associated with ammonium oxidation (hzsABC and hdh) were also positively correlated with Fe(III) reduction (omcS), suggesting a role for the Feammox process in driving As mobilization. The current study illustrates how genomic sequencing tools can help dissect complex biogeochemical systems, and strengthen biogeochemical models that capture key aspects of groundwater As enrichment.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/química , Compostos Férricos/metabolismo , Compostos Ferrosos , Água Subterrânea/química , Nitratos/análise , Oxirredução , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...